
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Evaluating Untangling Tools
Anonymous Author(s)

ABSTRACT

Developers often make code changes that contain unrelated con-
cerns such as both bug fixes and refactoring. These tangled concerns
hinder code review. This problem has been addressed by untan-
gling tools, which automatically partition unrelated concerns into
coherent groups.

Unfortunately, we don’t know how effective these untangling
tools are in practice because they have rarely been directly com-
pared to one another or evaluated on real commits. Instead, untan-
gling tools have been evaluated on synthetic commits, which may
differ from real commits made by developers. If so, assessments of
untangling tools’ performance, strengths, and weaknesses may be
misleading.

We provide a methodology and evaluation framework for realis-
tically comparing untangling tools. We evaluated three untangling
techniques on real bug-fixing commits using quantitative and qual-
itative methods.

The granularity of a tool’s representation of a diff (the tool’s
data structures: diff hunks, AST nodes, etc.) strongly affects the
untangling performance and whether the generated groups are
coherent for a human reader. Commit characteristics such as the
size of the commit also have a statistically significant effect on the
performance of the untangling tools. Moreover, nested and control-
dependent changes degrades the performance of untangling tools.

CCS CONCEPTS

• Software and its engineering→ Software libraries and repos-

itories.

KEYWORDS

empirical evaluation, evaluation framework, untangling tools, min-
ing software repositories, version control system

ACM Reference Format:

Anonymous Author(s). 2023. Evaluating Untangling Tools. In Proceedings
of 46th International Conference on Software Engineering (ICSE 2024). ACM,
New York, NY, USA, 10 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

A tangled code change is a patch (or commit, revision, pull request,
etc.) containing multiple concerns, such as both a bug fix and a
refactoring [7, 10, 14]. For code review, themultiple concerns induce
a higher cognitive load [1, 18, 23], making reviews of tangled code

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE 2024, April 2024, Lisbon, Portugal
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

- index = 0;
+ counter = 0;
…
- for (i = 0; i <= 10; i++) {
+ for (i = 0; i < 10; i++) {
…
- index++;
+ counter++;

- for (i = 0; i <= 10; i++) {
+ for (i = 0; i < 10; i++) {

Tangled changes
Refactoring changes

Bug fixing changes

- index = 0;
+ counter = 0;
…
- index++;
+ counter++;

Figure 1: Tangled code changes untangled into two groups.

One group contains a variable renaming and the other group

contains a bug fix, where the bound of the for loop is

changed.

more costly and error-prone. For AI assistants, code synthesis, and
bug-fixing models, the multiple concerns create noise and bias in
the learning dataset, reducing performance [7, 22].

Untangling tools aim to solve this problem by automatically
clustering these concerns into distinct groups (fig. 1). Unfortunately,
untangling tool evaluations have reliability and reproducibility
concerns.

We found four reliability concerns in untangling tools eval-
uations: partial evaluations, incomparable performance metrics,
synthetic commits, and small datasets. Partial evaluations denotes
evaluations that only compare a tool to the tool they are based
on, ignoring other approaches that have appeared in the litera-
ture [5, 6, 11, 12, 15, 21]. This is problematic, because it makes
it difficult for researchers to compare different approaches, espe-
cially between programming languages. Incomparable performance
metrics denotes evaluations that use different performance metrics,
making it difficult to knowwhich untangling approach is better [13].
Synthetic datasets denotes evaluations that use a heuristic process
that artificially creates tangled commits [3, 7, 13, 16, 20]. These syn-
thetic commits may not be representative of real tangled commits.
We are unaware of work that evaluates the differences between real
and synthetic commits. Developers and tool-builders using tools
evaluated on synthetic datasets may be misled with false expecta-
tions about the untangling performance in practice. Additionally,
past evaluations use different heuristics for creating the synthetic
commits and different performance metrics to evaluate their tools,
making it difficult to compare untangling tools from one evalua-
tion to another. Small datasets denotes evaluations that use a small
number of commits, making it difficult to generalize or perform
quantitative analysis.

The reproducibility concerns we focus on are: disparate evalua-
tion infrastructures and unavailable datasets. Disparate evaluation
infrastructures denotes evaluations that use different evaluation
infrastructures, making it difficult to compare the performance of
the untangling tools. For example, some evaluations use a different
programming language than others. Unavailable datasets denotes
evaluations that use commits that are not available to the public,

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2024, April 2024, Lisbon, Portugal Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

such as when the untangling tools are evaluated by using develop-
ers in a company [2, 5, 6, 20]. This makes it difficult for researchers
to reproduce the evaluation and compare other untangling tools.

We address reliability concerns by contributing a methodology
for realistically comparing untangling tools, including a perfor-
mance metric to rank untangling tools, a quantitative evaluation of
two untangling tools on 835 real bug-fixing commits, and a quanti-
tative evaluation of how commit characteristics impact untangling
performance.

We address reproducibility concerns by contributing an extend-
able evaluation framework for evaluating untangling tools, and
a dataset containing the untangling results for the evaluated un-
tangling tools. We also contribute the reimplementation of an un-
tangling tool to enable the untangling of Java source code and C#
source code.

Our experiments reveal a statistically and practically significant
performance difference between untangling tools. We also find that
the size of the commit measured by number of lines, number of
files, and number of hunks has a statistically significant effect on
the performance of the untangling tools, as well as the presence of
tangled lines or tangled hunks in the commit. Additionally, the un-
tangling performance for a tool can vary widely between synthetic
and real commits.

To support open science, we provide our evaluation framework,
scripts, and data https://zenodo.org/record/8206629.

2 METHODOLOGY

This section describes our methodology to evaluate untangling
tools on bug-fixing commits.

2.1 Research Questions

We ask the following research questions:
RQ1 Which untangling tool performs best on real
tangled commits?
RQ2 What characteristics of tangled commits affect
untangling performance? This indicates where re-
search should focus its effort.

2.2 Dataset

We evaluated the untangling tools on bug-fixing commits from the
Defects4J [9] dataset, version 2.0.0. Defects4J is a collection of real
bug-fixing commits that have been manually untangled to separate
the bug fix from the rest of the changes in the commit. The dataset
contains 835 real bug-fixing commits from 17 open-source projects.

The version control system of the Chart project is incompatible
with the SmartCommit untangling tool, so we excluded the 26
Chart commits, resulting in a dataset of 809 commits. 49.6% of
these commits are tangled: they contain unrelated changes that the
Defects4J authors manually untangled.1 A single line may appear
in both the big fix and the tangled changes, if the Defects4J authors
judged that the line contained both types of changes. We call such
a line a tangled line. A tangled hunk is a hunk contains either a

1The Defects4J authors created a minimal patch that fixes the bug, rather than trying to
determine the programmer’s intent with each line. For example, their minimal patches
omit changes to comments.

tangled line or at least one bug-fixing line and one non-bug-fixing
line.

The remaining 50.4% of bug-fixing commits in Defects4J are
atomic — they do not include any extraneous changes. We include
these commits in our evaluation to determine whether tools are
able to recognize atomic commits and not untangle them.

The median size of the changes in the original commit (as it
appears in a project’s version control history) is 46 lines changed.
The median size of the unrelated whitespace changes, including
blank lines and documentation, is 12 lines. The median size of
non-Java source code changes, including Test files, non-Java (.xml,
README.md, etc.) files, is 16 lines.

2.3 Untangling Tools

We evaluate the Flexeme [16] and SmartCommit [20] untangling
tools because they are recent, never evaluated on real commits, and
partially compared to each other on artificially tangled commits [13].
Section 6 discusses other untangling tools.

We also include file-based untangling as a naive untangling tool.
File-based untangling groups code changes based on the file they
appear in. File-based untangling is a straightforward technique and
has shown good performance in previous studies [20].

2.3.1 Flexeme. Flexeme [16] untangles at the AST node level. After
parsing the program into an AST, the approach leverages program
dependencies and name flows [4] to create groups containing syn-
tactically and semantically related changes. Changes such as import
statements, comments, and whitespace changes are ignored by this
tool.

The original tool untangles C# source code. We reimplemented
Flexeme to work on Java source code based on research papers [4,
16], online documentation, and correspondence with Flexeme’s
author.

2.3.2 SmartCommit. SmartCommit [20] untangles a commit by
clustering a diff hunk graph. A diff hunk is a group of contiguous
changed lines (added lines, deleted lines, and/or changed lines)
in the differences between files [17]. SmartCommit uses graph
partitioning to cluster the diff hunks containing code changes that
are syntactically related. The tool untangles Java source code.

2.4 Measures

We wish to compare SmartCommit and Flexeme, but they have
different granularity of untangling. SmartCommit untangles at the
diff hunk level, while Flexeme untangles at the AST level, i.e., each
node in the AST difference graph is labeled with a group.

To compare these two approaches, we translate the results of
SmartCommit and Flexeme to the line level. We use line granular-
ity because it is a ubiquitous baseline that is easy for developers
to understand and that all untangling approaches results can be
translated to. For SmartCommit, we label each line with the group
of the hunk it belongs to. For Flexeme, we use the label of an AST
node for the line that contains the corresponding source code. One
line may have multiple labels in the Flexeme labeling.

We present an example of a tangled code change occurring in
Cli 29 in listing 1. The line is tangled with a bug fix (the first argu-
ment of str.substring() is updated from 0 to 1) and a refactoring

2

https://zenodo.org/record/8206629

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Evaluating Untangling Tools ICSE 2024, April 2024, Lisbon, Portugal

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

(str.length() is refactored into length). As a result, the entire
hunk (which in this case consists of a single line) is considered
tangled.

Listing 1: Tangled change in Cli 29

1 @@ -67,1 +68,1 @@ class Util
2 - str = str.substring(0, str.length () - 1);
3 + str = str.substring(1, length - 1);

Untangling tools ignore (some) documentation, whitespace, and
other changes. Furthermore, the Defects4J authors did not include
code comments or whitespace in the minimized bug fixes that we
use as ground truth. To account for these facts, our evaluation uses a
whitespace-free version of Defects4J. In the whitespace-free version,
all blank lines, trailing whitespace, and code comments have been
eliminated. Whitespace at the beginning of lines and within lines
is not changed. This whitespace-free version compiles (which tree-
based and graph-based untangling tools require), but it still contains
changes that are outside the purview of (some) untangling tools.
When computing untangling scores, we use cleaned differences that
also exclude import statements, test files, and non-Java files. The
cleaned differences only include Java program source code. We call
lines that do not appear in the cleaned diff “noncode lines”; all lines
that remain in the clean diff are called “code lines”. Figure 2 shows
our cleaning process and evaluation pipeline.

Figure 2: Evaluation Pipeline for Untangling Tools. The un-

tangling tools are run on the whitespace-free Defects4J bug-

fixing commit, while the ground truth, diff metrics, and

Rand index scores are generated from the cleaned version.

2.4.1 Comparison of untangling tools (RQ1). For each bug in De-
fects4J, there is a ground-truth clustering created by the Defects4J
developers, in which each diff line is classified into up to two groups:
"fix" (minimal bug-fixing changes) and "other" (unrelated, non-bug-
fixing changes). Atomic lines will be assigned to only one group,
while tangled lines will be assigned to both groups.

We measure the performance of an untangling tool using the
Rand index [19]. The Rand index is a measure of similarity for two
clusterings of the same data. The Rand index ranges from 0 (worst)
to 1 (best: the clusterings are identical). In our context (comparing
against Defects4J), the Rand index gives a high score for groups
containing only bug-fixing changes or non-bug-fixing changes,

and penalizes groups containing both bug-fixing changes and non
bug-fixing changes.

Let there be 𝑛 changed lines {𝑙1, 𝑙2, . . . , 𝑙𝑛} in the cleaned commit.
To compute the Rand index of clusterings𝐶1 and𝐶2, first determine,
for each pair of lines ⟨𝑙 𝑗 , 𝑙𝑘 ⟩, whether the clustering puts the two
lines in the same group or in different groups. Represent each
clustering 𝐶𝑖 as a mapping𝑀𝑖 from ⟨𝑙 𝑗 , 𝑙𝑘 ⟩, where 𝑗 < 𝑘 , to {“same
group”, “different groups”}. Each mapping contains

(𝑛
2
)
elements.

The Rand index is the fraction of the mapping elements that agree:

Rand index =
|𝑀1 ∩𝑀2 |(𝑛

2
) =

∑
1≤ 𝑗<𝑘≤𝑛

[𝑀1 (𝑙 𝑗 , 𝑙𝑘) = 𝑀2 (𝑙 𝑗 , 𝑙𝑘)](𝑛
2
)

where [𝑃] = 1 if 𝑃 is true and [𝑃] = 0 if 𝑃 is false [8].
A commit might tangle more than two concerns (say, a bug

fix, a refactoring, and a renaming). If so, the correct output is a
clustering with three groups. However, the Defects4J authors were
only concerned with the bug fix and put all other changes into a
single group. To avoid penalizing a correct clustering with more
than two groups, we postprocess the untangling tool output. We
merge all groups that do not contain any bug-fixing line (according
to the ground truth) together. We call this process “non-bugfix-
merging”.

We answer RQ1 using a quantitative analysis. We use a linear
mixed-effects model to test whether the performance between the
untangling tools is significantly different and we use Cohen’s 𝑑 to
determine whether the difference is practically significant.

Linear mixed-effects are statistical models that combine fixed
effects and random effects to account for the correlation of data
points within nested or clustered groups. The dependent variable
is the untangling performance measured by the Rand Index. The
independent variable is the tool used to perform the untangling. The
potential random effects are that the Defects4J bug-fixing commits
address different types of bugs and that the bug-fixing commits
belong to different projects. A linear mixed-effects model is suitable
to answer this research question because the dependent variable is
continuous and it supports the random effects that may interfere
with the independent variables.

The null hypothesis (𝐻0) is that the untangling tools’ perfor-
mance is not different. We reject the null hypothesis if the 𝑝-value
is less than 0.05.

2.4.2 What makes commits hard or easy to untangle? (RQ2). We
measure the following 8 commit characteristics:

• Number of code files updated. The number of Java source
code files added, deleted, or modified in the cleaned commit.

• Number of noncode files updated. The number of non-
code files (Test.java, .xml, etc.) added, deleted, or modified
in the original whitespace-free commit.

• Number of code lines updated. The number of Java source
code lines added, deleted, or modified in the cleaned commit.

• Number of noncode lines updated. The number of im-
port statements and non-Java lines added, deleted, or modi-
fied in the original whitespace-free commit.

• Number of hunks. The number of hunks (groups of nearby
added, deleted, or modified lines) in the cleaned commit.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ICSE 2024, April 2024, Lisbon, Portugal Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

• Average hunk size. The average size of the hunks in the
cleaned commit.

• Tangled line. Number of tangled lines in the cleaned com-
mit.

• Tangled hunk. Number of tangled hunks in the cleaned
commit.

We answer RQ2 using a statistical analysis. We use a linear model
with random effects to test whether the measured commit metrics
have a significant impact on the untangling performance, and we
use Cohen’s 𝑑 to measure the effect size. As for RQ1, the mixed
effects models accounts for the fact that the bug-fixing commits ap-
pear in different projects and that the projects are made by different
developers.

The null hypothesis (𝐻0) is that the commit metrics have no
impact on the untangling performance on real bug-fixing commits.
We reject the null hypothesis if the p-value is less than 0.05.

2.5 Exploratory Manual Evaluation

To complement the quantitative analysis for RQ1 and RQ2, we
manually evaluated a sample of the decompositions produced by
SmartCommit and Flexeme to answer:

• What type of changes are tangled with the bug fix? Are there
refactoring, formatting, co-located bugfix, maintenance, new
features?

• In the untangling tool output, are the changes separated in
groups that are understandable by a human?

• When the tools make mistakes, do the tools tend to over-
cluster or under-cluster?

• Are there specific coding idioms that cause poor perfor-
mance?

2.5.1 Procedure. We compared the results of the decompositions
generated by the tool and the Defects4J ground truth against the
original bug-fixing changes in the version control system. We
looked at the decompositions generated by the tools on the original
bug-fixing commit rather than the clean bug-fixing commit to em-
ulate the experience a developer would have when using the tool
in practice.

We viewed the original changes are in the unified diff format2.
We retrieved them from each project repository using the commit
id of the corresponding Defects4J bug-fixing commit. The decom-
position results are in CSV format, where each row corresponds
to a changed line denoted by its filename, its line number, and the
group(s) determined by the untangling tools. The Defects4J ground
truth is in the same CSV format as the decomposition results.

3 RESULTS

We ran the untangling tools on the 809 bug-fixing commits from
our subset dataset of Defects4J. Flexeme untangled 680 commits
and produced no decomposition on the remaining 129 commits.
For 44 commits out of the 129 commits, Flexeme couldn’t find a de-
composition. For the remainder 85, Flexeme errored. SmartCommit
untangled all 809 commits successfully. In case of an error, we use
the trivial decomposition, in which all the changes belong to one
group.

2https://en.wikipedia.org/wiki/Diff#Unified_format

3.1 Untangling Statistics

Table 1: The number of groups in the ground truth and gen-

erated by each tool after section 2.4.1 has been performed.

Number of groups

Treatment Min. Max. Median Std. dev.

File Untangling 1 16 1 1
Flexeme 1 21 2 2
Ground Truth 1 2 1 0
SmartCommit 1 9 1 0

Table 1 shows the number of groups generated by each tool. The
median number of groups is 1 or 2, which concords with the ground
truth. However, the tools have high maximums, especially Flexeme.
It is difficult for developers to understand such untangling results.

Given that our dataset is composed of bug fixes, an untangling
tool should produce 2 or 3 groups per commit: 1 group for the fixes,
and 1 or 2 more groups for non-bug fix changes. The minimum of
1 group for file-based untangling and the ground truth is due to
the fact that some Defects4J bugs have no test file changes, only
one source file change. The maximum of 2 for the ground truth
accounts for the representation of tangled lines.

Table 2: The size of the groups in the ground truth and gen-

erated by each tool.

Size of groups

Treatment Min. Max. Median Std. dev.

File Untangling 1 375 6 23
Flexeme 1 486 3 19
Ground Truth 1 483 5 24
SmartCommit 1 285 6 23

Table 2 shows the size of the groups for each tool, including the
ground truth for reference. We can observe that the median and
the standard deviation of SmartCommit, file-untangling and the
ground truth are similar whereas Flexeme has a lower median and
standard deviation. We hypothesize that Flexeme creates smaller
groups compared to the other tools and the ground truth.

3.2 RQ1: Which untangling approach performs

best on real tangled commits?

File-based untangling performs best with a median Rand index
score of 0.93. SmartCommit has a median of 0.89, and Flexeme has
0.52. There is a wide performance gap between SmartCommit and
Flexeme.

We hypothesize that file-based untangling has the best untan-
gling performance because in the domain of bug-fixes, it is common
that the fix is in a single file, which makes file-based untangling triv-
ially perfect. Also, recall that our experimental methodology omits
non-code files, including test files. In the original (non-whitespace-
free) VCS changes (excluding test files changes because the test files
are not manually untangled in Defects4J), file-based untangling has
a Rand index score of 0.75, SmartCommit has 0.73, and Flexeme has

4

https://en.wikipedia.org/wiki/Diff#Unified_format

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Evaluating Untangling Tools ICSE 2024, April 2024, Lisbon, Portugal

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

0.53. For this reason we encourage researchers to take a holistic
approach when designing untangling tools and not just focus on
source code changes. Other changes, such as documentation and
comments, can have a significant impact on the performance of the
untangling tools.

The ranking of the tools is the same when we drop the commits
that errored to simulate a situation in which all the tools’ bugs are
fixed. In this scenario, Flexeme is 0.52. File-based and SmartCommit
are unchanged because there were no errors.

The cleaned diffs have a smaller number of files changed on
average. In this scenario, all the tools have a longer tail distribution
as there is a large number of bug projects that have changes on only
1 file improving the tool’s chance of getting a high decomposition
score. To account for this we also report the average untangling
performance. We find that file-based untangling gets a performance
of 0.78, SmartCommit gets an average performance of 0.77, and
Flexeme gets a performance of 0.58. While the average performance
drops for SmartCommit and file-based untangling and increases for
Flexeme, the ranking of the tools does not change.

0.00

0.25

0.50

0.75

1.00

SmartCommit Flexeme
Tool

P
er

fo
rm

an
ce

Figure 3: Performance comparison for SmartCommit and

Flexeme. Each dot represents the Rand index for a Defects4J

bug. The red whiskers represent the interquartile range.

Figure 3 shows the distribution of untangling performance. The
performance difference is statistically significant (p < 0.05), has a
medium effect size that is relatively significant (Cohen’s d = 0.69),
and an adjusted 𝑅2 estimate of 0.107.

A score of 1 occurs when the tool decomposition is exactly the
same as the ground truth. For many commits, both tools have a
score of 1, which explains the dense cloud of points at the top of
the graph for both Flexeme and SmartCommit.

A score of 0 occurs when the ground truth contains exactly two
lines and the tool doesn’t have the same clustering as the ground
truth. For instance, in bug Closure 14, the ground truth contains

two changed lines in the same group. Flexeme classifies only one
changed line, so the other is added automatically in another group.
This results in a Rand index of 0.

We determined the effect of project and bug by comparing two
linear models. The first model has the untangling performance as
the dependent variable and the tool as the independent variable. The
second model has the same dependent and independent variable,
and models the difference between bugs the project they belong to
as random effects. We found that accounting for the random effects
didn’t change the statistical significance of the treatment effect and
only increased the adjusted 𝑅2 estimate by 0.03. We use the adjusted
𝑅2 estimate to compare the models because the adjusted score takes
into account the number of variables in themodel, which is different
between our two models. Table 3 summarizes the two models.

Table 3: Comparing two models shows that project and bug

have no significant effect on the results. Both models have

the same dependent and independent variables. The second

model has the Bug Id and the project as random effects.

Model Coefficient P-Value Adjusted 𝑅2

Flexeme SmartCommit

Without random effects 0.58 0.19 <2e-16 0.11
With random effects 0.59 0.19 <2e-16 0.14

The SmartCommit paper [20] reports two accuracies: a field
study accuracy and a controlled experiment accuracy. They mea-
sured the accuracy using the Rand Index on diff hunks. The field
study untangles real commits and the controlled experiment uses
a synthetic dataset. For the field study, the SmartCommit paper
reports a median accuracy of 74.70% and 70.45% for the two projects
studied. For the controlled experiment, SmartCommit achieves a
median accuracy per project in the range of 71.00 to 83.50%. Over-
all the median accuracy is 79.5%. In our evaluation, we observe a
median performance of 89% which is also measured by the Rand
Index, but at the line level. We hypothesize that the difference in
performance is due to removing the non-code changes from the
VCS as evidenced by the drop to 73% when untangling on all the
changes (except tests). 73% is in the lower range of the accuracy re-
ported by SmartCommit in their experiments. We hypothesize that
the evaluation on a finer granularity identifies more tool mistakes,
resulting in a lower Rand index score.

The Flexeme paper [16] reports a median accuracy of 0.81 on
a synthetic dataset. The accuracy is measured using the node ac-
curacy, which measures the percentage of nodes in the diffed AST
that have been labeled with the correct group among the nodes that
have changed. This is incomparable with the Rand index, so we
cannot compare the two performances. However, our experimen-
tal results are qualitatively different from Flexeme’s. The Flexeme
paper reports good performance we observe only average perfor-
mance.

Answer to RQ1: SmartCommit is significantly better at un-
tangling real bug fixes than Flexeme.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2024, April 2024, Lisbon, Portugal Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 4: Commit characteristics effect on performance. Significant values are bolded. Coefficients are simplified to their sign.

Cohen’s 𝑑 is also bolded if the effect size if at least medium (Cohen’s 𝑑 > 0.5) only if the characteristic is already statistically

significant. Cohen 𝑑 measures the effect size.

Metric Flexeme SmartCommit

𝑝-value Coefficient Cohen’s 𝑑 𝑝-value Coefficient Cohen’s 𝑑

Code files 0.77 + -0.91 4e-06 - -0.73

Noncode files 0.45 + -0.47 0.9 - -0.27
Code lines 0.07 + -0.79 0.004 - -0.79

Noncode lines 0.73 + -0.64 0.05 - -0.64
Number of hunks 0.01 + -0.71 5e-04 - -0.68

Average hunk size 0.83 - N/A 0.5 - N/A
Tangled line 0.40 - 0.04 8e-09 - 0.17
Tangled hunk 0.13 - -0.05 <2e-16 - 0.15

3.3 RQ2: What characteristics of tangled

commits affect untangling performance?

We computed eight commit characteristics on the whitespace-free
and clean diffs.

Table 4 measures the impact of the commit characteristics on
untangling performance. We used a linear model. A commit char-
acteristics has a significant impact on performance if its p-value is
smaller than 0.05 (p < 0.05).

We measured the impact of each commit characteristic against
performance separately from the other metrics because we the
results were slightly different when adding all the commit charac-
teristics to the model at once. We speculate that model is not able
to fit all the metrics at the same time for the amount of data points.

As the number of hunks increases, the performance increase for
Flexeme and decreases for SmartCommit.

It is surprising that as the commit size grows, Flexeme’s perfor-
mance improves. SmartCommit’s coefficients are negative, which
is what we expected.

All the metrics for SmartCommit have a negative coefficient
which mean, for example, that as the number of code files increases,
the performance decreases. All the significant metrics also have a
medium effect size as denoted by Cohen’s d between 0.5 and 0.8,
except for the tangled line and tangled hunk that have a negligible
effect size and therefore are not practically significant. The neg-
ligible effect size might be due to the fact that these metrics are
skewed at 0. Only 19% of the commits have tangled lines and 35%
of the commits have tangled hunks.

These results suggest that for SmartCommit, larger commits
(code files, code lines, and number of hunks) are harder to untangle
than smaller commits. In addition, commits with tangled lines and
tangled hunks are harder to untangle than commits with no tangled
lines and no tangled hunks. However, there doesn’t seem to be a
large effect in practice on performance when the number of tangled
lines and tangled hunks increases from, say, 1 to 2 or more.

Answer to RQ2: Commit characteristics have a significant
impact on the performance of the untangling tools. Larger
commits are statistically significantly harder to untangle, and
the presence of tangled lines and tangled hunks also make

commits harder to untangle. Moreover, different tools are
affected by different commit characteristics.

3.4 Exploratory Manual Analysis

We sampled 10 bugs at random from Defects4J (table 5) and manu-
ally evaluated the results of the untangling tools.

3.4.1 When the tools make mistakes, do the tools tend to over-
cluster or under-cluster? SmartCommit consistently under-clusters
the changes. When the changes contain files other than Java files,
the non-Java files are always grouped together. i.e., one or more
groups for the Java files and one group for the non-Java files. One
the other hand, Flexeme consistently over-cluster the changes, of-
ten generating more than 2 groups for even a couple of changed
lines such as for the Math 3 bug-fixing commit, shown in listing 2,
where it classified the line if (len == 1 {) in two groups and
the line return a[0] * b[0]; in three groups. The two lines have
two overlapping groups. Only the last line is in a group that the
first line is not in.

Listing 2: Diff of MathArrays.java for theMath 3 bug-fixing

commit.

1 @@ -818,6 +818 ,11 @@ public class MathArrays {
2 throw new DimensionMismatchException(len ,

b.length);
3 }
4

5 + if (len == 1) {
6 + // Revert to scalar multiplication.
7 + return a[0] * b[0];
8 + }
9 +
10

11 final double [] prodHigh = new double[len];
12 final double [] prodLow = 0;

These observations are supported by the statistics in table 1 and
table 2. The high standard deviation, high median group count, and
low standard deviation for group size for Flexeme indicates that
Flexeme tends to over-cluster, generating many small groups. For
SmartCommit, the high standard deviation and high median group

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Evaluating Untangling Tools ICSE 2024, April 2024, Lisbon, Portugal

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 5: Defects4J bug-fixing commits that we manually evaluated. The table shows the commit’s project, its associated De-

fects4J bug id, the number of bug-fixing changed lines, the number of non-bug-fixing changed lines, the number of groups

generated by SmartCommit and Flexeme, and the types of non-bug-fixing changes.

Project Bug id Bug fix changes Other changes Flexeme groups SmartCommit groups Non-bug fixing changes types

Cli 28 2 0 1 2 N/A
Cli 33 19 12 6 1 Documentation
Closure 64 8 2 1 2 Documentation
Csv 8 13 11 4 2 Documentation, Refactoring
Lang 8 1 16 4 2 Refactoring, Related changes
Lang 57 2 0 1 1 N/A
Math 3 3 1 5 2 Documentation
Math 16 23 23 10 1 Documentation, Related changes
Math 28 4 35 12 1 Documentation
Math 34 2 3 7 2 Documentation

size indicates that SmartCommit tends to under-cluster, creating
few big groups.

Regarding the 2 atomic commits in our sample, both SmartCom-
mit and Flexeme did not over-cluster or under-cluster the changes,
even when more than one line changed.

From our observations, we speculate that the internal represen-
tations used in the clustering algorithms are the main cause for
under-clustering or over-clustering when the tools make mistakes.
SmartCommit groups elements at the hunk level, which constrains
the number of groups possible. For untangling the bug fixes, this is
advantageous as the sampled fixing changes were typically on con-
tiguous lines. On the other hand, Flexeme groups elements at the
AST-node level, enabling any node on the same line to be grouped
differently, as evidenced by the high number of groups reported in
table 1.

3.4.2 Are there specific coding idioms that cause poor performance?
Both tools perform poorly when the changes were tangled with
unrelated dependent code changes or unrelated nested code changes
(for example, the bug fix changes an if statement and the body of the
if statement contains unrelated changes). Untangling this type of
tangled changes is difficult not only for tools but also for developers.

3.4.3 What are the type of changes tangled with the bug fix? Are
there refactoring, formatting, co-located bugfix, maintenance, new
features? Flexeme was better at untangling refactoring changes
due to the number of groups it created while SmartCommit was
limited at the hunk level. Related changes that were not part of the
bug fix (maintenance) were the most difficult to untangle for both
tools. For documentation, SmartCommit included documentation
changes with the bug fix because the changes were often in the
same hunk. Flexeme didn’t group documentation changes since it
classifies changes based on the AST nodes, which doesn’t include
commented lines.

3.4.4 Are the changes separated in groups that are understandable
by a human? SmartCommit classifies the hunks so the changes are
always contiguous lines, which is familiar to developers. The limi-
tation is when tangled changes occurs in the same hunk as the bug
fix, which happened 8 times out of 10 in our sample. SmartCommit
will only produce one group. Flexeme, on the other hand can create
many groups for the same lines, making it hard for developers to

understand why there are multiple overlapping groups, and what
the groups represent.

Overall, both tools are able to untangle the bug fixes with some
limitations stemming from the internal representations used in the
clustering algorithms. SmartCommit is limited to clustering tangled
changes at the hunk level and cannot untangle changes that are in
the same hunk. On the other hand, Flexeme can untangle changes
at the AST node level, but generates too many groups that are
incorrect. Even if the content of the groups generated by Flexeme
were correct, the number of groups generated makes it hard for
developers to understand the purpose of each group.

We recommend that untangling tools researchers consider how
the untangling results will be presented to developers so they can
read the changes, understand the purpose of each group and use
the generated groups to create atomic commits. Future work should
also investigate how to represent tangled changes on the same line.

3.5 Implications in practice

The effects of the statistically and practically significance untan-
gling performance difference can be observed in the exploratory
manual analysis table 1. SmartCommit creates cohesive groups that
are close to the manual untangling done by the Defects4J authors,
while Flexeme generates too many groups, containing too few lines
and lines are often overlapping between groups, which is rarely the
case in the manual untangling.

In the context of a bug-repair tool, this means that SmartCommit
will create groups that are more likely to be correct than Flexeme,
and more likely to reflect what developers would do if they were to
untangling the bug-fixes, compared to the many groups generated
by Flexeme that are not likely to be represent valid bug-fixes. If
applied to pull request, this means that SmartCommit will create
groups that are likely to be helpful to developers while Flexeme’s
groups won’t be helpful to developers because the number of groups
and the overlapping groups will make it difficult to understand what
each group is supposed to represent.

Future work should investigate if the format and content of the
untangling results produced by the untangling tools is coherent to
a human reader. For example can a developer use the untangling
results to help them in a code review? Future work should also
investigate whether a significant performance difference on the

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ICSE 2024, April 2024, Lisbon, Portugal Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

dataset is also significant for the developers in practice. It may be so
that even a lower performing tool might still be practically useful
for developers.

Additionally, we encourage researchers to take a holistic ap-
proach when designing untangling tools and take into account the
use case of the tool. For example, if the tool is meant to be used in
pull requests, the tool must be able to untangle noncode changes
such as comments and documentation because it would be helpful
to group these type of changes with their related code changes.

3.6 Comparison with the evaluation on the

synthetic datasets

In the original synthetic SmartCommit benchmark [20], SmartCom-
mit obtained a median untangling performance of 0.74.We expected
the difference to be bigger between the synthetic and real commits.
For Flexeme, while we cannot directly compare the performances
because Flexeme uses a different metric than the rand index for its
synthetic benchmark, we can speculate that there is a qualitative
difference in performance between the original implementation of
Flexeme and ours as mentioned in section 3.2.

There are multiple factors that could have increased or decreased
the performance such as 1) the synthetic benchmark measures the
untangling performance at the hunk level rather than line level. 2)
the projects are different 3) the content of the commits are different.

Further investigation is needed to understand the difference be-
tween the synthetic and real commits and their effect on untangling
performance. A potential direction for future work is to compute
the untangling performance on the tools’ original synthetic dataset
using the rand index to compare the performance of the synthetic
and real commits. Additionally, our community needs to investi-
gate how the performance of the tools compares on the different
synthetic datasets because each tool is evaluated on a synthetic
dataset that is constructed using different heuristics.

4 LIMITATIONS

4.1 Java implementation of Flexeme

Flexeme was originally implemented for C#. We reimplemented
Flexeme for Java. We based our implementation on the original
paper, online documentation, and discussions with the original
author. Unfortunately, we didn’t have access to the specification or
implementation of the component that reads the source code and
generates a Program Dependency Graph, called the PDG generator.

We tested our Java implementation using a new synthetic dataset
created with the same heuristic as the C# synthetic dataset. The
projects selected for the Java dataset were commons-lang, joda-
time, and commons-math. Flexeme’s untangling performance on
its synthetic dataset is measured using accuracy as described in the
Flexeme’s paper [16]. We present the results of the Java synthetic
dataset in table 6.

For the Java synthetic dataset, we obtain an average accuracy
of 0.5. The original authors obtained an average accuracy of 0.81
on the C# synthetic dataset. The accuracy results on these two
synthetic datasets matches the qualitative performance on the real
commits we discussed in section 3.2. However, unlike our evalua-
tion on real commits, the evaluation on synthetic commit doesn’t

Table 6: Average accuracy scores for Flexeme on synthetic

Java dataset for individual projects and overall.

Project Accuracy

Joda 0.45
Lang 0.53
Math 0.48
Overall 0.50

convert the granularity of the results so it’s improbable that convert-
ing the untangling results from the AST format to the line-based
format is the culprit in the difference of performance between the
implementations. Additionally, we speculate that the difference of
performance cannot be explained by the difference of programming
language or projects but is due to differences in implementation.

We previously investigated differences in implementation be-
tween the C# and Java PDG generators and corrected the differences
we found. We found two issues. Firstly, the granularity of the PDG
generated by the C# PDG generator and the Java PDG generator
were different. The C# implementation generated a PDG with a
statement granularity while the Java implementation generated a
PDG with a granularity at the operation level, resulting in the gen-
erated Java PDG to be much larger than its C# counterpart which
we thought might be interfering with Flexeme’s clustering algo-
rithm and lowering the performance. Secondly, we found that some
nodes in the PDG produced when Flexeme merges the before-PDG
and after-PDG (which represent respectively the state of the code
before and after the bug-fixing changes.), are incorrectly labeled
when the before-PDG and after-PDG were generated using the Java
PDG generator. This issue isn’t caused by the longer PDG graphs
produced by the Java PDG generator. We speculate that the cause
is either due to a subtle difference in the generated Java PDGs or
due to a bug in the PDG merging algorithm in Flexeme. We didn’t
need to reimplement the PDGmerging algorithm since the merging
algorithm is language agnostic and not part of the PDG generator.

Unfortunately fixing these issues didn’t improve the performance
of Flexeme on the Java synthetic dataset. We generated PDGs on
identical source code in Java and C# and verified that the generated
PDGs were identical in format and content. We are still investigat-
ingwhether a difference of implementation could be the cause of the
performance difference rather than the difference of programming
language and projects, even though fixing the existing implementa-
tion issues didn’t improve the performance significantly.

5 THREATS TO VALIDITY

5.1 Defects4J

We evaluated untangling tools only on bug-fixing commits. Other
tangled commits might have different characteristics. The bug-
fixing commits were untangled by the Defects4J authors to create
minimal bug fixes, and might not reflect the conceptually cleanest
decomposition of the tangled commit.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Evaluating Untangling Tools ICSE 2024, April 2024, Lisbon, Portugal

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

The Defects4J authors selected bug fixing commits from 17
projects. Moreover, Defects4J authors curate each bug-fixing com-
mit to guarantee the commit is indeed fixing a bug. Other ap-
proaches find bug-fixing commits by looking for corrective key-
words in the commit messages, which doesn’t guarantee that the
commit is a bug-fixing commit [6, 15, 24].

Defects4J manual untangling sometimes induces tangled lines,
such as in Lang 8 where the field mTimeZone is renamed as zone
to make the bug-inducing patch compile, since the other changes
in the bug-fix also calls zone. These tangled changes exist purely
to minimize the bug-fix patch according to the Defects4J Bug Min-
imization Guidelines, and we comply with the Defects4J rules to
identify such tangled lines.

5.2 Performance Metric

Calculating the untangling performance with a metric that works
across tools requires to convert the results of the untangling tools,
potentially affecting their performance. We use a line-based metric
that has a granularity between the diff hunk of SmartCommit and
the AST of Flexeme. However, converting the AST results to line-
based results might induce bias due to the fact that multiple AST
nodes belong to one changed line, creating multiple labels for that
line.

We mitigate this issue by measuring the pair-wise agreement for
labels using the Rand Index. This causes identical labels for a lines
to be counted multiple times with no penalty and lines different
labels to be counted as agreement if the line has also different labels
in the ground truth.

5.3 Analysis

We accounted for the random effects caused by having different bug-
fixes and the bug-fixes belong to different project in our quantitative
analysis. However, we didn’t check whether the identity of the
developer that committed the original bug-fix has an impact on
performance. Given that the aforementioned random effects didn’t
have an effect on the model’s performance, we don’t expect the
developer identity to have an impact either.

6 RELATEDWORK

Previous evaluations of untangling tools suffer from one or more of
the following issues: use of synthetic commits, use of unavailable
commits, small datasets, partial evaluations, and use of different
performance metrics.

Evaluations on synthetic commits requires no manual work
to establish ground truth (which is the synthetic commit’s con-
stituent original commits) [3, 7, 13, 16, 20]. In addition to the fact
that synthetic commits may have different characteristics than real
commits, these evaluations are often not comparable because they
use different heuristics to create the synthetic commits.

Evaluations on unavailable commits is problematic because
it limits the reproducibility of the evaluation. These evaluations
are done in companies with developers acquainted to the project,
but where the commits are not publicly available, preventing the
researchers to release the commits as part of their dataset [2, 5, 6,
20].

Evaluations using real commits use a small dataset. Evaluating
on real commits is challenging because the ground truth has to
be untangled manually, by outsiders to the software project. In
consequence, the resulting dataset is too small for significance
analysis [24].

Partial evaluations give comparative improvements from one
version of an untangling tool to the next [3, 7, 16, 20] or, may not
compare to other tools entirely [5, 6, 11, 12, 15, 21]. In both cases,
these evaluations ignore other tools that are developed in parallel
or that use different technical approaches.

Another issue is the different performance metrics used to
evaluate the untangling tools that is often tied to the internal repre-
sentation of the untangling tool. For example a hunk-based tool [20]
may use a different performance metric than an AST-based tool [16]
to evaluate how the changes are grouped, making it difficult to de-
termine if one tool is better than another [13].

Compared to previous work such as Li et., al. (UTango) [13], we
use the same performance metric to compare Flexeme and Smart-
Commit, making it possible to rank the tools. We also we evaluate
on real commits, rather than synthetic commits that may not reflect
the performance of the untangling tools in practice. Our evaluation
uses open-source commits, which enables future researchers to re-
produce our results.We evaluate unrelated untangling tools that use
different technical approaches and target different programming
languages.

In addition, compared to the methodology of other papers, De-
fects4J is closer to reality than synthetic datasets [7] or datasets gen-
erated by filtering the commit message by corrective keywords [6,
15, 24]. Filtering commits by keywords in the commit message is
used to generate bug-fixing datasets, but has many false alarms or
misses.

7 CONCLUSION AND FUTUREWORK

In this paper, we presented amethodology for evaluating untangling
tools on a dataset of real bug-fixing commits. We conducted a
quantitative and qualitative evaluation of the performance of the
Flexeme and SmartCommit tools.

We found that SmartCommit is significantly more performant
than Flexeme and that a naive file-based approach is better than
both of these tools when untangling bug fixes code changes. Ad-
ditionally, we found that the size of the commit has a statistically
significant impact on the untangling performance. We found that
as the size of the commit increases, the performance decreases.
Additionally we found that the presence of tangled lines or tangled
hunks in the commit has a statistically significant impact on the
untangling performance.

Our manual exploratory analysis of the untangling results show-
cases how SmartCommit performed better than Flexeme by cre-
ating more cohesive groups due to its internal representation at
the hunk level compared to Flexeme’s fine grain AST-based repre-
sentation that created many small overlapping groups. In addition
to the groups generated by Flexeme being incorrect, the number
of groups and overlapping lines are challenging to understand for
developers, and we speculate that they would be difficult to lever-
age for downstream tasks such as code review or automated bug
repair. Thus, we encourage researchers to take a holistic approach

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ICSE 2024, April 2024, Lisbon, Portugal Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

when building untangling tools and to be mindful of the internal
representation of the untangling tool and how the granularity of
the decompositions impacts the developers and the downstream
tasks.

In future work, we plan to evaluate the untangling performance
on downstream applications such as code review and automated
bug repair.We also plan to develop an untangling tool that leverages
past code changes to address the limitations stemming from using
only the code changes from the current commit to untangle changes.

REFERENCES

[1] Mike Barnett, Christian Bird, João Brunet, and Shuvendu K Lahiri. 2015. Helping
developers help themselves: Automatic decomposition of code review changesets.
In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
Vol. 1. IEEE, 134–144.

[2] Mike Barnett, Christian Bird, João Brunet, and Shuvendu K. Lahiri. 2015. Help-
ing Developers Help Themselves: Automatic Decomposition of Code Review
Changesets. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, Vol. 1. 134–144. https://doi.org/10.1109/ICSE.2015.35

[3] Siyu Chen, Shengbin Xu, Yuan Yao, and Feng Xu. 2022. Untangling composite
commits by attributed graph clustering. In Internetware 2022: 13th Asia-Pacific
Symposium on Internetware (Internetware). Hohhot, China, 117–126.

[4] Santanu Kumar Dash, Miltiadis Allamanis, and Earl T. Barr. 2018. RefiNym:
Using Names to Refine Types. In ESEC/FSE 2018: The ACM 26th joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). Lake Buena Vista, FL, USA, 107–117.

[5] Martín Dias, Alberto Bacchelli, Georgios Gousios, Damien Cassou, and Stéphane
Ducasse. 2015. Untangling fine-grained code changes. In 2015 IEEE 22nd Inter-
national Conference on Software Analysis, Evolution, and Reengineering (SANER).
IEEE, 341–350.

[6] Bo Guo, Young-Woo Kwon, and Myoungkyu Song. 2019. Decomposing compos-
ite changes for code review and regression test selection in evolving software.
Journal of Computer Science and Technology 34 (2019), 416–436.

[7] Kim Herzig, Sascha Just, and Andreas Zeller. 2016. The impact of tangled code
changes on defect prediction models. Empirical Software Engineering 21, 2 (2016),
303–336.

[8] K. E. Iverson. 1962. A Programming Language. Wiley, New York.
[9] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A Database of

existing faults to enable controlled testing studies for Java programs. In ISSTA
2014, Proceedings of the 2014 International Symposium on Software Testing and
Analysis. San Jose, CA, USA, 437–440. Tool demo.

[10] David Kawrykow and Martin P. Robillard. 2011. Non-essential changes in version
histories. In 2011 33rd International Conference on Software Engineering (ICSE).
351–360. https://doi.org/10.1145/1985793.1985842

[11] Hiroyuki Kirinuki, Yoshiki Higo, Keisuke Hotta, and Shinji Kusumoto. 2016. Split-
ting commits via past code changes. In 2016 23rd Asia-Pacific Software Engineering
Conference (APSEC). IEEE, 129–136.

[12] Patrick Kreutzer, Georg Dotzler, Matthias Ring, Bjoern M Eskofier, and Michael
Philippsen. 2016. Automatic clustering of code changes. In Proceedings of the
13th International Conference on Mining Software Repositories. 61–72.

[13] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2022. UTANGO: Untangling Commits
with Context-Aware, Graph-Based, Code Change Clustering Learning Model. In
Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Singapore, Singapore)
(ESEC/FSE 2022). Association for Computing Machinery, New York, NY, USA,
221–232. https://doi.org/10.1145/3540250.3549171

[14] EmersonMurphy-Hill, Chris Parnin, and Andrew P. Black. 2009. Howwe refactor,
and how we know it. In ICSE 2009, Proceedings of the 31st International Conference
on Software Engineering. Vancouver, BC, Canada, 287–297.

[15] Hoan Anh Nguyen, Anh Tuan Nguyen, and Tien N Nguyen. 2013. Filtering noise
in mixed-purpose fixing commits to improve defect prediction and localization.
In 2013 IEEE 24th international symposium on software reliability engineering
(ISSRE). IEEE, 138–147.

[16] Profir-Petru Pârtachi, Santanu Kumar Dash, Miltiadis Allamanis, and Earl T. Barr.
2020. Flexeme: Untangling Commits Using Lexical Flows. In ESEC/FSE 2020: The
ACM 28th joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE). Sacramento, CA, USA, 63–74.

[17] GNU Project. accessed 2023-04-26. GNU Diffutils Manual: Hunks. https://www.
gnu.org/software/diffutils/manual/html_node/Hunks.html

[18] Achyudh Ram, Anand Ashok Sawant, Marco Castelluccio, and Alberto Bacchelli.
2018. What makes a code change easier to review: an empirical investigation on
code change reviewability. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 201–212.

[19] WilliamM. Rand. 1971. Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical association 66, 336 (1971), 846–850.

[20] Bo Shen, Wei Zhang, Christian Kästner, Haiyan Zhao, Zhao Wei, Guangtai Liang,
and Zhi Jin. 2021. SmartCommit: A graph-based interactive assistant for activity-
oriented commits. In ESEC/FSE 2021: The ACM 29th joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). Athens, Greece, 379–390.

[21] Sarocha Sothornprapakorn, Shinpei Hayashi, and Motoshi Saeki. 2018. Visualiz-
ing a tangled change for supporting its decomposition and commit construction.
In 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMP-
SAC), Vol. 1. IEEE, 74–79.

[22] Shin Hwei Tan and Abhik Roychoudhury. 2015. relifix: Automated Repair of
Software Regressions. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, Vol. 1. 471–482. https://doi.org/10.1109/ICSE.2015.65

[23] Yida Tao and Sunghun Kim. 2015. Partitioning composite code changes to
facilitate code review. In 2015 IEEE/ACM 12th Working Conference on Mining
Software Repositories. IEEE, 180–190.

[24] Min Wang, Zeqi Lin, Yanzhen Zou, and Bing Xie. 2019. CoRA: Decomposing
and Describing Tangled Code Changes for Reviewer. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE). 1050–1061.
https://doi.org/10.1109/ASE.2019.00101

10

https://doi.org/10.1109/ICSE.2015.35
https://doi.org/10.1145/1985793.1985842
https://doi.org/10.1145/3540250.3549171
https://www.gnu.org/software/diffutils/manual/html_node/Hunks.html
https://www.gnu.org/software/diffutils/manual/html_node/Hunks.html
https://doi.org/10.1109/ICSE.2015.65
https://doi.org/10.1109/ASE.2019.00101

	Abstract
	1 Introduction
	2 Methodology
	2.1 Research Questions
	2.2 Dataset
	2.3 Untangling Tools
	2.4 Measures
	2.5 Exploratory Manual Evaluation

	3 Results
	3.1 Untangling Statistics
	3.2 RQ1: Which untangling approach performs best on real tangled commits?
	3.3 RQ2: What characteristics of tangled commits affect untangling performance?
	3.4 Exploratory Manual Analysis
	3.5 Implications in practice
	3.6 Comparison with the evaluation on the synthetic datasets

	4 Limitations
	4.1 Java implementation of Flexeme

	5 Threats to Validity
	5.1 Defects4J
	5.2 Performance Metric
	5.3 Analysis

	6 Related Work
	7 Conclusion and Future Work
	References

